Optimization of convergent angle of the Venturi meter for best coefficient of discharge

Author:

Khan Zohaib Ahmed1,Jain Naman2

Affiliation:

1. a Department of Civil Engineering, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India

2. b Ehyte India Private Limited, Haryana, India

Abstract

Abstract Computational fluid dynamics is a compelling apparatus for getting stream flow and anticipating how this flow will react to various limiting boundary conditions. With this learning, the focal point of this research is applying computational fluid elements such as CFD to issues dealing with stream flow measurement/estimation in closed conduits such as pipes utilizing differential stream meters like the Venturi meter. After thorough research from the existing literature, it was determined that the convergent angle (CA) of a standard Venturi meter has not been optimized yet. The range given for a standard ASME Venturi CA is 20–22°. More than 50 models were created and run in ANSYS FLUENT, which was used as a CFD tool. Three β-ratios are taken into consideration here, which are 0.4, 0.5 and 0.6. An optimum value of CA, corresponding to each β, is obtained by finding out the best coefficient of discharge (closest to 0.99) for each test value of CA. Another aspect explored in this research is the relationship between Reynolds number and coefficient of discharge. This is done with the integration of ANSYS FLUENT and laboratory results. The results of this study yield a definite value of CA for each β.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference30 articles.

1. Investigation of mass flow rate in venturimeter using CFD analysis;Ameresh;International Journal of Engineering Research and Applications,2017

2. CFD analysis on discharge coefficient during non-Newtonian flows through orifice meter;Arun;International Journal of Engineering Science and Technology,2010

3. Numerical Assessment of the Pressure Recovery of the Turbulent Flow in a Venturi-Type Device

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3