Evaluation of the least square support vector machines (LS-SVM) to predict longitudinal dispersion coefficient

Author:

Mohammadi Ghaleni Mehdi1ORCID,Akbari Mahmood1,Sharafi Saeed2,Nahvinia Mohammad Javad1ORCID

Affiliation:

1. a Department of Water Science and Engineering, Arak University, Arak, Iran

2. b Department of Environment Science and Engineering, Arak University, Arak, Iran

Abstract

Abstract In this study, the least square support vector machines (LS-SVM) method was used to predict the longitudinal dispersion coefficient (DL) in natural streams in comparison with the empirical equations in various datasets. To do this, three datasets of field data including hydraulic and geometrical characteristics of different rivers, with various statistical characteristics, were applied to evaluate the performance of LS-SVM and 15 empirical equations. The LS-SVM was evaluated and compared with developed empirical equations using statistical indices of root mean square error (RMSE), standard error (SE), mean bias error (MBE), discrepancy ratio (DR), Nash-Sutcliffe efficiency (NSE) and coefficient of determination (R2). The results demonstrated that LS-SVM method has a high capability to predict the DL in different datasets with RMSE = 58–82 m2 s−1, SE = 24–39 m2 s−1, MBE = −1.95–2.6 m2 s−1, DR = 0.08–0.13, R2 = 0.76–0.88, and NSE = 0.75–0.87 as compared with previous empirical equations. It can be concluded that the proposed LS-SVM model can be successfully applied to predict the DL for a wide range of river characteristics.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3