Removal of Cu(II) by MgAl–OH LDHs/birch leaves composites prepared by ball-milling hydrothermal method and mechanism insight

Author:

Zhang Fengrong1ORCID,Zhang Binghan1,Han Dandan1,Fang Shaokang1,Wu Lishun1,Hou Wanguo2

Affiliation:

1. a School of Chemistry and Chemical Engineering, Heze University, Heze 274015, P. R. China

2. b Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, P. R. China

Abstract

Abstract Using Al(OH)3 and Mg(OH)2 as raw materials, MgAl layered double hydroxides (LDHs) modified from birch leaves were prepared by the ball-milling–hydrothermal method, denoted as LDHs/BL, and used for the treatment of wastewater containing Cu(II). The morphology, crystal shape, and specific surface area of the samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and BET-specific surface area analyzer. The results showed that the prepared LDHs/BL composites had good crystal shape, large specific surface area, and suitable pore structure. Langmuir and Freundlich adsorption isotherm models were used to analyze the adsorption. The results showed that the adsorption conforms to the Freundlich adsorption isotherm model. Under the same adsorption conditions, the adsorption capacity of the LDHs/BL complex was higher than that of LDH, the removal efficiency of the former was 92%, and that of the latter was 68%. The adsorption mechanism includes metal precipitation and isomorphic replacement. More importantly, this study provides a green method to prepare LDHs. LDHs/BL composites are expected to be used as a new kind of environmental adsorbent for wastewater treatment. This work provides a new idea for the utilization of agricultural and forestry wastes.

Funder

the Science and Technology Program for Colleges and Universities of Shandong Province

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3