Experimental investigation of oxygen transfer efficiency in hydraulic jumps, plunging jets, and plunging breaking waves

Author:

Hoque Ashabul1,Paul Anip Kumar1

Affiliation:

1. Department of Mathematics, University of Rajshahi, Rajshahi 6205, Bangladesh

Abstract

Abstract The scope of the paper is to analyse the different similarities of air entrainment among the hydraulic jumps, plunging jets, and plunging breaking waves and to discuss current practices. The measured data are reexamined and scrutinised to investigate the gas exchange phenomena through an air-water interface. In particular, oxygen transfer efficiency and penetration depth by air bubbles are discussed. The calculated results highlight that the oxygen transfer efficiency is decreased with the increase of energy dissipation rate both in plunging jets and breaking waves. In contrast, it is shifted almost parallel in the case of hydraulic jumps. In addition, the aeration lengths in the hydraulic jumps and penetration depths both in plunging jets and plunging breaking waves were dependent on the jet impact velocity.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference55 articles.

1. The effect of bubbles formed by breaking wind waves on air-sea gas transfer;Atmospheric Ocean Physics,1984

2. Investigational study on self-aeration characteristic of hydraulic jump;IOSR Journal of Mechanical Civil Engineering (IOSR-JMCE),2012

3. Dissolved oxygen modeling of Yamuna River using different ANFIS models;Water Science & Technology,2021

4. Oxygen transfer at hydraulic structures;Journal of the Hydraulics Division,1978

5. The development of aeration performance with different typed nozzles in a vertical plunging water jet system;International Journal of Science & Technology,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3