Optimal allocation of irrigation water in a single-reservoir and a single-pumping-station system under deficit irrigation conditions

Author:

Wei Cong1,Cheng Jilin12ORCID

Affiliation:

1. a College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

2. b Institute of Modern Rural Water Conservancy, Yangzhou University, Yangzhou 225009, China

Abstract

Abstract Aiming at the optimal allocation of irrigation water in a multi-water source project in a water resource shortage area, this study developed a water resource joint scheduling optimization model for the reservoir and the pumping station under deficit irrigation conditions. In the model, the maximum annual yield of the irrigation area was the objective function; the water supply, water spill of the reservoir and replenishment water of the pump station at each stage were the decision variables; and the total annual water supply of the system, the reservoir operation criteria, the water rights of the pumping station, and the water demand of the crop during the entire growth period were the constraint conditions. According to the characteristics of the model, a large system decomposition aggregation dynamic programming (DADP) method is proposed to transform the N + 1 dimensional dynamic programming problem into a N + 1 one-dimensional dynamic programming problem for solution. In addition, this study also uses the real-coded genetic algorithm (RGA) and DADP to compare the algorithms, and discusses the performance of the two algorithms from the optimization of the algorithm and the applicability of the algorithm.

Funder

the National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3