Effect-based water quality assessment of rivers receiving discharges from legacy mines by using acute and chronic bioassays with two cladoceran species

Author:

Mano H.1ORCID,Iwasaki Y.12ORCID,Shinohara N.1ORCID

Affiliation:

1. Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba City, Ibaraki, Japan

2. Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ward, Sapporo, Hokkaido, Japan

Abstract

Abstract Information about the ecotoxicological impacts of surface waters that receive discharges from legacy mines is valuable to infer the ecological impacts on natural environment for managing mine discharges. In this study, we investigated behavioural and reproductive responses of two cladoceran species Ceriodaphnia dubia and Daphnia magna to water samples collected from metal-contaminated and reference rivers near legacy mines in Japan. The toxicity identification evaluation (TIE) of water samples that caused D. magna immobility was conducted to evaluate the key metals causing acute toxicity. The results of our water quality assessment performed using two cladoceran species demonstrated modest to significant adverse effects on their behaviour and reproduction, suggesting the potential for ecotoxicological impacts on natural populations and communities at several contaminated sites that received mine drainage. The results of TIE of water samples that caused D. magna immobility indicated likely contributions of Zn and Cu. These results imply that effect-based water quality assessments such as ours can provide direct and unique evidence of the ecotoxicological impacts of metals in river waters, which will be useful for better understanding and predicting the ecological effects of these metals in the natural environment.

Funder

Environment Research and Technology Development Fund

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3