A framework to determine soil-water retention relation for mine wastes and its applications in emergency risk assessment

Author:

Wang Haibin12,Chen Quan1,Zhang Liwei12,Li Xiaochun12

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Tailing dams and waste dumps formed by the accumulation of mine wastes are usually at long-term unsaturated state under evaporation and consolidated drainage conditions. Soil-water retention relation is one of the key constitutive relations to analyze the seepage processes in tailing dams and waste dumps. In this study, typical coarse- and fine-grained tailings from a metallurgical mine were chosen to study the soil-water retention characteristics of the tailing samples. To begin with, the relationship between volumetric water content and suction of the tailing samples was experimentally measured, and typical soil-water characteristic curves (SWCCs) (i.e., Gardner, van Genuchten and Fredlund–Xing curves) were applied to fit the experimental data. After that, four empirical models to estimate the parameters in SWCCs (i.e., Aubertin-1998 model, Aubertin-2003 model, Vanapalli-2005 model and Chin-2010 model) were tested, and the Vanapalli-2005 model was the best-fit model for the tailing samples. Furthermore, this study proposes a generalized emergency risk assessment soil-water retention characteristics model for tailing dams and waste dumps, and a framework for the quick estimation of parameters in the SWCC is proposed as well. The recommended soil-water retention characteristics model and the related parameters can be used to predict water levels in tailing dams and waste dumps, which are very helpful for emergency risk assessment under rainstorm or flooding conditions.

Funder

National Natural Science Foundation of China

National key R&D program of China

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3