Affiliation:
1. Department of Engineering and Science, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway
2. Norwegian Water Resources and Energy Directorate (NVE), P.O. Box 5091 Maj., 0301 Oslo, Norway
Abstract
Abstract
Sensitivity analysis is a commonly used technique in hydrological modeling for different purposes, including identifying the influential parameters and ranking them. This paper proposes a simplified sensitivity analysis approach by applying the Taguchi design and the ANOVA technique to 2D hydrodynamic flood simulations, which are computationally intensive. This approach offers an effective and practical way to rank the influencing parameters, quantify the contribution of each parameter to the variability of the outputs, and investigate the possible interaction between the input parameters. A number of 2D flood simulations have been carried out using the proposed combinations by Taguchi (L27 and L9 orthogonal arrays) to investigate the influence of four key input parameters, namely mesh size, runoff coefficient, roughness coefficient, and precipitation intensity. The results indicate that the methodology is adequate for sensitivity analysis, and that the precipitation intensity is the dominant parameter. Furthermore, the model calibration based on local variables (cross-sectional water level) can be inaccurate to simulate global variables (flooded area).
Subject
Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献