Research and application of parameter estimation method in hydrological model based on dual ensemble Kalman filter

Author:

Lu Mengtian1,Lu Sicheng2,Liao Weihong3,Lei Xiaohui3,Yin Zhaokai4ORCID,Wang Hao13

Affiliation:

1. Institute of Municipal Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310030, China

2. Guangxi Nanning Water Conservancy and Electric Power Design Institute Co. Ltd, Guangxi 530001, China

3. Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

4. China Three Gorges Corporation, Beijing 100038, China

Abstract

Abstract Although field measurements and using long hydrological datasets provide a reliable method for parameters' calibration, changes in the underlying basin surface and lack of hydrometeorological data may affect parameter accuracy in streamflow simulation. The ensemble Kalman filter (EnKF) can be used as a real-time parameter correction method to solve this problem. In this study, five representative Xin'anjiang model parameters are selected to study the effects of the initial parameter ensemble distribution and the specific function form of the parameter on the EnKF parameter estimation process for both single and multiple parameters. Results indicate: (1) the method of parameter calibration to determine the initial distribution mean can improve the assimilation efficiency; (2) there is mutual interference among the parameters during multiple parameters' estimation which invalidates some conclusions of single-parameter estimation. We applied and evaluated the EnKF method in Jinjiang River Basin, China. Compared to traditional approaches, our method showed a better performance in both basins with long hydrometeorological dataset (an increase of Kling–Gupta efficiency (KGE) from 0.810 to 0.887 and a decrease of bias from −1.08% to −0.74%); and in basins with a lack of hydrometeorological data (an increase of KGE from 0.536 to 0.849 and a decrease of bias from −15.55% to −11.42%).

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3