Copula-based modeling of hydraulic structures using a nonlinear reservoir model

Author:

Tan Qiaofeng1,Mao Yunze1ORCID,Wen Xin1,Jin Tian1,Ding Ziyu1,Wang Zhenni1

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

Abstract

Abstract Multivariate flood frequency analysis has been widely used in the design and risk assessment of hydraulic structures. However, analytical solutions are often obtained based on an idealized linear reservoir model in which a linear routing process is assumed, and consequently, the flood risk is likely to be over- or underestimated. The present study proposes a nonlinear reservoir model in which the relationships of reservoir water level with reservoir volume and discharge are assumed to be nonlinear in order to more accurately describe the routing process as it takes into consideration the interactions between hydrological loading and different discharge structures. The structure return period is calculated based on the copula function and compared with that based on the linear reservoir model and the bivariate return period based on the Kendall distribution function. The results show that the structure return period based on the linear model leads to an underestimation of the flood risk under the conditions of high reservoir water level. For the same reservoir, linear and nonlinear reservoir models give quite different reservoir volume-water level and discharge-water level curves; therefore, they differ substantially in the sensitivity to flood events with different combinations of flood peak and volume. We also analyze the effects of the parameters involved in the reservoir volume-water level and discharge-water level relationships on the maximum water level at different return periods in order to better understand the applicability and effectiveness of the proposed method for different hydraulic projects.

Funder

national natural science foundation of china

fundamental research funds for the central universities

jiangsu water science and technology project

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference17 articles.

1. Copula-based modeling of flood control reservoirs;Water Resour. Res.,2017

2. Multivariate quantiles in hydrological frequency analysis;Environmetrics,2011

3. Bivariate statistical approach to check adequacy of dam spillway;J. Hydrol. Eng.-ASCE,2005

4. Multivariate hydrological frequency analysis using copulas;Water Resour. Res.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3