Affiliation:
1. Key Laboratory for Surficial Geochemistry of the Ministry of Education, Nanjing University, Nanjing 210023, China
2. School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
Abstract
Abstract
Nitrate (NO3-N) load characteristics in consecutive dry years in the Huai River Basin (HRB), China, were examined using streamflow and NO3-N concentration data. The data set spanned 12 years including three consecutive dry years. Baseflow separation, load estimation, and nonparametric linear regression were applied to separate point source (PS), baseflow, and surface runoff NO3-N loads from the total load. The mean annual nonpoint source (NPS) load was 2.84 kg·ha−1·yr−1, accounting for 90.8% of the total load. Baseflow contributed approximately one-fourth of the natural runoff and half of the NPS load. The baseflow nitrate index (i.e., the ratio of baseflow NO3-N load to total NPS NO3-N load) was 25.4% higher in consecutive dry years than in individual dry years. This study demonstrated that baseflow is the preferential hydrological pathway for NO3-N transport in the HRB and that baseflow delivers a higher NO3-N percentage to streams under long-term drought than under short-term drought. This study highlights the alarming evidence that continuous drought caused by climate change may lead to a higher rate of nitrogen loss in agricultural watersheds.
Funder
the Major Projects of Science and Technology for Water Pollution Control and Management
Subject
Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献