Decline in net primary productivity caused by severe droughts: evidence from the Pearl River basin in China

Author:

Zhou Yuliang1,Zhou Ping1

Affiliation:

1. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

Abstract Understanding the spatiotemporal characteristics of drought events and their impacts on terrestrial net primary productivity (NPP) is crucial for drought mitigation and environmental protection. This study, by taking the Pearl River basin as the case region, investigated drought duration, severity, intensity, affected area, and centroids during 1960–2015 based on the Standardized Evapotranspiration Deficit Index and three-dimensional clustering algorithm and then revealed how these drought characteristics have affected NPP. Results showed that there were altogether 32 severe drought events lasting at least 3 months in the basin, with half lasting longer than 6 months. The total NPP loss significantly correlated with drought severity and intensity. Most drought events caused a reduction in NPP across more than half of the drought-affected area; specifically, the February–December drought in 2011 has cut NPP by 31.85 Tg C, accounting for 11.7% of the regional annual mean NPP, while the September 2009–September 2010 drought caused a decrease of 20.26 Tg C in NPP. Our research improves the insight into the relationship between NPP and drought, which helps decision-makers manage droughts and provides guidance for drought-related studies across other regions.

Funder

national natural science foundation of china

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3