Groundwater quality modeling using neuro-particle swarm optimization and neuro-differential evolution techniques

Author:

Kisi Ozgur1,Keshavarzi Ali2,Shiri Jalal3,Zounemat-Kermani Mohammad4,Omran El-Sayed Ewis5

Affiliation:

1. Center for Interdisciplinary Research, International Black Sea University, Tbilisi, Georgia

2. Laboratory of Remote Sensing and GIS, Department of Soil Science, University of Tehran, Karaj 31587-77871, Iran

3. Water Engineering Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

4. Department of Water Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

5. Soil and Water Department, Faculty of Agriculture, Suez Canal University, Ismailia, Egypt

Abstract

Abstract Recently, the capabilities of artificial neural networks (ANNs) in simulating dynamic systems have been proven. However, the common training algorithms of ANNs (e.g., back-propagation and gradient algorithms) are featured with specific drawbacks in terms of slow convergence and probable entrapment in local minima. Alternatively, novel training techniques, e.g., particle swarm optimization (PSO) and differential evolution (DE) algorithms might be employed for conquering these shortcomings. In this paper, ANN-PSO and ANN-DE models were applied for modeling groundwater qualitative parameters, i.e., SO4 and sodium adsorption ratio (SAR). Three statistical parameters including root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2) were used for assessing the models' capabilities. The results showed that the ANN-DE presents more accurate results than ANN-PSO in modeling SAR and electrical conductivity (EC).

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3