A calibration-free, robust estimation of monthly land surface evapotranspiration rates for continental-scale hydrology

Author:

Szilagyi Jozsef1

Affiliation:

1. Department of Hydraulic and Water Resources Engineering, Budapest University of Technology and Economics, Budapest, Hungary and Conservation and Survey Division, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

Abstract

Abstract Continuous simulation of monthly evapotranspiration rates for 1979–2015 was performed by the latest, calibration-free version of the complementary relationship of evaporation over the conterminous United States. The results were compared to similar estimates of the WREVAP program and the North American Regional Reanalysis (NARR) project. Validation of the three methods was performed by the Parameter-Elevation Regressions on Independent Slopes Model precipitation and Hydrologic Unit Code level-6 runoff data. The present method outperforms the WREVAP and NARR estimates with a root-mean-square error (RMSE) of 89 mm yr−1, an R2 value of 0.87, an absolute bias (σ) of −5 mm yr−1, and slope (m) and intercept (c) values of 0.97 and 22 mm yr−1, respectively, for the best-fit line, in comparison to similar values (RMSE = 161 mm yr−1, R2 = 0.8, σ = 124 yr–1 mm yr−1, m = 0.88, c = 191 mm yr−1; and RMSE = 195 mm yr−1, R2 = 0.81, σ = 146 mm yr−1, m = 1.05, c = 120 mm yr−1) of the latter two methods. The value of the Priestley–Taylor (PT) coefficient was determined by inversion of the PT-equation via a model-independent identification of wet cells and their estimated surface temperatures.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference43 articles.

1. Evapotranspiration reelle, evapotranspiration potentielle, et production agricole;Ann. Agronom.,1963

2. Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture;Agric. Syst.,2014

3. Indications of increasing land surface evaporation during the second half of the 20th century;Geophys. Res. Lett.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3