Hydraulic characteristics of varying slope gradients, rainfall intensities and litter cover on vegetated slopes

Author:

Sun Jiamei1,Fan Dengxing1,Yu Xinxiao1,Li Hanzhi1

Affiliation:

1. Key Laboratory of Soil & Water Conservation and Desertification Combating, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China

Abstract

Abstract Litter produced by forests performs crucial functions in rainfall interception and soil conservation, particularly in the condition that larger raindrops formed by canopy accelerate soil erosion. To explore how forest litter exerts runoff hydrological characteristics and sediment yield processes, experiments on forest covered (Vitexnegundo var. heterophylla) slopes were conducted under various combinations of rainfall intensities and slope gradients. The results showed that litter reduced runoff yield rate by 9–31% and reduced sediment yield rate by 65–90%, with mean runoff and sediment reductions of 18% and 76% for all treatments. On forest covered slopes, Reynolds number and runoff power generally increased with the increase in both rainfall intensity and slope gradient. Litter layer reduced Reynolds number and runoff power with 8–29% and 56–80%, respectively. Darcy–Weisbach resistance coefficient decreased by increasing rainfall intensity and slope gradient. Litter layer increased Darcy–Weisbach resistance coefficient by three to nine times. Relationships between sediment yield rate and Reynolds number, runoff power, Darcy–Weisbach resistance coefficient were described by exponential, linear, power functions, respectively. The critical runoff power values for slopes with and without litter were 0.0027 and 0.0010 m/s, respectively. Reynolds number was the best hydrodynamic parameter for dynamic erosion characterizing.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference42 articles.

1. Resistance to overland flow on desert hillslopes;J. Hydrol.,1986

2. Investigating the role of raindrop impact on hydrodynamic mechanism of soil erosion under simulated rainfall conditions;Soil Sci.,2012

3. Bagnold, R. 1966 An Approach to the Sediment Transport Problem From General Physics. US Geological Survey Professional Paper, pp. 422–437.

4. Rill development and soil erosion: a laboratory study of slope and rainfall intensity;Earth Surf. Proc. Land.,2010

5. Simulation of heat and moisture transfer through a surface residue–soil system;Agr. Forest Meteorol.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3