Coupling a global hydrodynamic algorithm and a regional hydrological model for large-scale flood inundation simulations

Author:

Huang Shaochun12,Hattermann Fred F.2

Affiliation:

1. The Norwegian Water Resources and Energy Directorate (NVE), P.O. Box 5091, Majorstua, Oslo 0301, Norway

2. Potsdam Institute for Climate Impact Research, P.O. Box 601203, Telegrafenberg, Potsdam 14412, Germany

Abstract

Abstract To bridge the gap between 1D and 2D hydraulic models for regional scale assessment and global river routing models, we coupled the CaMa-Flood (Catchment-based Macro-scale Floodplain) model and the regional hydrological model SWIM (Soil and Water Integrated Model) as a tool for large-scale flood risk assessments. As a proof-of-concept study, we tested the coupled models in a meso-scale catchment in Germany. The Mulde River has a catchment area of ca. 6,171 km2 and is a sub-catchment of the Elbe River. The modified CaMa-Flood model routes the sub-basin-based daily runoff generated by SWIM along the river network and estimates the river discharge as well as flood inundation areas. The results show that the CaMa-Flood hydrodynamic algorithm can reproduce the daily discharges from 1991 to 2003 well. It outperforms the Muskingum flow routing method (the default routing method in the SWIM) for the 2002 extreme flood event. The simulated flood inundation area in August 2002 is comparable with the observations along the main river. However, problems may occur in upstream areas. The results presented here show the potential of the coupled models for flood risk assessments along large rivers.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference43 articles.

1. Advances in pan-European flood hazard mapping;Hydrological Processes,2014

2. Downstream channel geometry for use in planning-level models;JAWRA Journal of the American Water Resources Association,1994

3. A comprehensive surface-groundwater flow model;Journal of Hydrology,1993

4. Large-scale coupled hydrologic and hydraulic modelling of the Ob river in Siberia;Journal of Hydrology,2009

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3