Research on urban waterlogging risk prediction based on the coupling of the BP neural network and SWMM model

Author:

Zhang Jinping12ORCID,Li Xuechun1,Zhang Haorui1

Affiliation:

1. a School of Water Resources and Transportation, Zhengzhou University, High-Tech District, No. 100 Science Road, Zhengzhou 450001, China

2. b Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou 450001, China

Abstract

Abstract Scientific and effective urban waterlogging risk prediction can help improve urban waterlogging disaster prevention capabilities. Combining the numerical simulation model with the data-driven model, the construction of the urban waterlogging risk predictive model can satisfy the prediction accuracy and improve the prediction timeliness. Thus, this paper established an urban waterlogging risk predictive model based on the coupling of the BP neural network and SWMM model, and set five input patterns, finally selected the accumulative precipitation process and precipitation characteristics as input to predict the regional waterlogging risks under different urban rainstorm scenarios. The results show that the overall performance of the pipe drainage system in the study area is lower, and it cannot resist the rainstorm with a higher return period. Moreover, the total waterlogging risk of the southern old city is higher than that of the northern new city in the study area. The calculation speed of the prediction model constructed in this paper is thousands of times higher than that of the numerical model, so the calculation speed is very fast, which meets the requirements of the forecast timeliness.

Funder

National Key R&D Program of China

Natural Science Foundation of Henan Province

State Key Laboratory of Severe Weather

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3