Affiliation:
1. 1 College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract
Abstract
Uncertainties arising from extreme climate events and human activities pose a challenge to the efficient allocation of water resources. In this study, a type-2 fuzzy chance-constrained linear fractional programming (T2F-CCLFP) is developed to support the water resource management system under uncertainty by incorporating type-2 fuzzy sets, chance-constrained programming, and fractional programming into a comprehensive multi-objective optimization framework. The model enables the trade-off between economic, social, and environmental sustainability and provides water supply solutions associated with different levels of fuzzy uncertainty and risk of violating constraints. The T2F-CCLFP model is applied to Taiyuan, Shanxi Province, China, to support its water resource management. Results reveal that: (i) the industrial structure is transitioning toward diverse industries from energy and heavy industry dominance; (ii) external water transfer will be the major water-supply sources for the city in the future, accounting for 55 and 50% of the total water supply in 2025 and 2030, respectively; (iii) the water-supply security of the city is enhanced by provoking the utilization of reclaimed water (the annual growth rate is 13.9%). The results are helpful for managers in adjusting the current industry structure, enhancing water supply security, and contributing to the sustainable development of socio-economic and water systems.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
the Special Fund for Science and Technology Innovation Teams of Shanxi Province
the Natural Science Foundation of Shanxi Province, China
Subject
Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change