Evaluating the impact of projected CO2, temperature, and rainfall change on groundwater resources in a rice–wheat dominated cropping region of northwestern India

Author:

Kumar Satyendra1,Nand Viveka2,Narjary Bhaskar1ORCID,Harode Pavan Kumar1,Islam Adlul3,Yadav R. K.1,Kamra S. K.1

Affiliation:

1. a ICAR-Soil Salinity Research Institute, Karnal 132001, India

2. b Department of Bio-Resource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada

3. c NRM Division (ICAR), KAB II, New Delhi 110012, India

Abstract

Abstract Increasing CO2 concentration, temperature rise, and changes in rainfall due to climate change are expected to influence groundwater resources in irrigated agricultural regions. A simulation study using AquaCrop and MODFLOW models was undertaken to assess the combined effects of increasing CO2 concentrations, temperature, and rainfall changes on groundwater behavior in a rice–wheat cropping region of northwest India. Simulations were carried out for the 2016–2099 period under two scenarios: increasing CO2 concentrations corresponding to different RCPs (Scenario-I) and at a constant CO2 concentration of 369.4 ppm (Scenario-II). The results indicate that elevated CO2 negates the effect of rising temperature on evapotranspiration (ET) and water demand, and thus, lower ET is simulated under Scenario-I than Scenario-II for different RCPs during the future periods. The lower projected ET resulted in lower rice (2.3%–6.3%) and wheat (1.4%–16.1%) irrigation demand under Scenario-I than under Scenario-II. Of all RCPs, the lowest groundwater level (GWL) decline of 9.2, 20.5, and 24.4 m from the reference GWL (18.85 m) at the end of the early, mid-, and end-century periods, respectively, is projected under RCP8.5 and Scenario-I. Simulation results indicate that CO2 concentration plays an important role while assessing climate change effects on groundwater in irrigated agricultural systems.

Funder

ICAR

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3