Water allocation sustainability assessment in climate change: a modeling approach using water footprint and just policy

Author:

Imani Somaye1,Niksokhan Mohammad Hossein1ORCID,Delavar Majid2,Safari Shali Reza3

Affiliation:

1. a Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran

2. b Department of Water Resources Engineering, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

3. c Department of Sociology, Faculty of Literature and Humanities, Kharazmi University, Tehran, Iran

Abstract

Abstract Climate change has challenged water allocation for food production in water-scarce areas. This fact calls for water reallocation (RA) strategies in basins with dominant agriculture. This study develops a framework combining the SWAT model and water footprint (WF) to evaluate water resource sustainability and improve its indices by fair RA from agriculture. The Karkheh River Basin in Iran was chosen as a study area for verification. Deficit irrigation (DI) was a farm strategy to promote basin sustainability and maintain food security. DI was distributed according to the equality of resources, proposed by Ronald Dworkin, as a just allocation principle. It means irrigated water would be allocated based on an equal water ratio per hectare. Results showed that the basin is currently unsustainable regarding the groundwater (BkWS) and surface flow (BuWS). According to the SSP5-8.5 scenario, the BuWS in the basin increases from 1.12 to 1.22 (9%), and BkWS increases from 2 to 2.15 (7.5%), while GnWS remains relatively constant at 0.99. By Dworkin's principle, DI caused 21-48% reduction in water allocation among five provinces. RA improved the BuWS, GnWS, and BkWS and ensured environmental flow. Climate change reduces 3.5% of food production, with an extra 9% by RA. These reductions would not endanger food security.

Funder

Iran Water Resources Management Company

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3