Future projections of crop water and irrigation water requirements using a bias-corrected regional climate model coupled with CROPWAT

Author:

Agrawal Abhishek1,Srivastava Prashant Kumar23,Tripathi Vinod Kumar1ORCID,Maurya Swati2,Sharma Reema1,D. J. Shrinivasa1

Affiliation:

1. a Department of Agricultural Engineering, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India

2. b Remote Sensing Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India

3. c DST-Mahamana Centre for Excellence in Climate Change Research, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India

Abstract

Abstract The study is conducted to examine the climate change impact on rice Crop Water Requirement (CWR) and Net Irrigation Requirement (NIR) using the NASA Earth Exchange Global Daily Downscaled Projection (NEX-GDDP) coupled with the CROPWAT 8.0 model. The maximum temperature (Tmax), minimum temperature (Tmin), and rainfall projections for the baseline (years 1981–2015) and future (years 2030 and 2040) under Representative Concentration Pathway (RCP) 4.5 were derived from NEX-GDDP. To reduce the bias, linear scaling (LS) and the modified difference approach (MDA) were employed. Results show that LS performed better than the MDA along with improved statistical measures such as mean (μ), standard deviation (σ), and percent bias (Pbias), in the case of Tmax and Tmin (μ = 31.14 and 19.63 °C, σ = 5.75 and 6.78 °C, Pbias = 1.43 and 0.33%), followed by rainfall (μ = 2.67 mm, σ = 4.94 mm, and Pbias = 2.4%). The future climatic projections showed an increasing trend in both Tmax and Tmin, which are expected to increase by 1.7 °C by 2040. This would cause an increased range of 1.2 and 2% in 2030 and 2040, respectively. Due to a wide variation in effective rainfall (Peff), NIR could increase by 4 and 9% in 2030 and 2040, respectively. The above results may help formulate adaptation measures to alleviate the impacts of climate change on rice production.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3