Enhancing climate-resilient urban river restoration: predictive modeling of geomorphic changes

Author:

Jalaeifar Farzad1,Sarang Amin1,Abdoli Asghar2,Niksokhan Mohammad Hosein1

Affiliation:

1. a Department of Environmental Engineering, Faculty of Environment, University of Tehran, Tehran, Iran

2. b Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University G. C, Tehran, Iran

Abstract

Abstract Urbanization and climate change are two potent forces shaping the contemporary environment. Urban rivers, integral to city life, are profoundly affected by these dynamics. While restoration efforts have yielded promising results, a persistent challenge lies in the inadequate consideration of geomorphic processes and climate change impacts in restoration planning. This study addresses this critical gap by proposing a novel approach for designing stable urban river geometries in ungauged basins. Leveraging the Soil Conservation Service (SCS) method in conjunction with General Circulation Model (GCM) data, our research focuses on determining design discharge and channel stability. Our principal finding, based on the incorporation of parameters related to precipitation, runoff, and effective discharge, indicates a projected 35% increase in the width of stable urban rivers in the future. These results underscore the urgency of integrating climate change considerations into urban river restoration initiatives. Neglecting this imperative aspect risks the failure of restoration projects, particularly in addressing geomorphic challenges intensified by climate change. This research offers a valuable framework for future restoration efforts, ultimately contributing to the resilience and sustainability of urban river ecosystems.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3