Daily streamflow prediction based on the long short-term memory algorithm: a case study in the Vietnamese Mekong Delta

Author:

Nguyen Huu Duy1ORCID,Van Chien Pham2,Nguyen Quoc-Huy1,Bui Quang-Thanh1

Affiliation:

1. a Faculty of Geography, University of Science, Vietnam National University, Hanoi, Vietnam

2. b Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam

Abstract

Abstract The objective of this study is the development of a state-of-the-art method based on long short-term memory (LSTM), support vector machine (SVM), and random forest (RF) to predict the streamflow in the Mekong Delta in Vietnam, an area crucial to Vietnam's food security. Water level and flow data from 2014 to 2018 at the Tan Chau station and Can Tho (on the Hau River) were used as the input data of the prediction model. Three different ranges of data – from the preceding 4, 8, and 12 days – were used to predict streamflow for both 1 and 7 days ahead, resulting in six individual predictions. Various statistical indices, namely root-mean-square error, mean absolute error (MAE), and the coefficient of determination (R2), were used to assess the predictive ability of the model. The results showed that the SVM and random forest models were successful in improving the performance of the LSTM model, with R2 > 80%. For a prediction of 1 day ahead, the proposed models gave an R2 value of 2–5% higher than a prediction of 7 days ahead. These results highlighted that LSTM is a robust technique for characterizing and predicting time series behaviors in hydrology applications.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3