Bias correction of ERA5-Land temperature data using standalone and ensemble machine learning models: a case of northern Italy

Author:

Niazkar Majid1ORCID,Piraei Reza2,Menapace Andrea1,Dhawan Pranav1,Torre Daniele Dalla1,Larcher Michele1,Righetti Maurizio1

Affiliation:

1. a Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 5, 39100 Bolzano, Italy

2. b Department of Civil Engineering, Shiraz University, 7134851156 Shiraz, Iran

Abstract

Abstract Using the global climate model outputs without any adjustment may bring errors in water resources and climate change investigations. This study tackles the critical issue of bias correction temperature in ERA5-Land reanalysis for 10 ground stations in northern Italy using nine machine learning (ML) techniques. Among standalone ML models, XGBoost regression emerged as the most effective standalone ML model, outperforming others across 6 out of 10 stations, while random forest regression, Gaussian process regression, and support vector regression obtained the second to fourth places. In contrast, AdaBoost regression (ABR) achieved the least favorable performance. Furthermore, nine ensemble ML models are proposed to correct bias of the reanalysis of temperature data. The results indicated that the K-nearest neighbors-based ensemble model excelled and secured the top rank in 7 out of 10 stations, while the multiple linear regression-based ensemble model achieved the highest precision in 4 out of 10 stations. Furthermore, other ML-based ensemble models displayed satisfactory results. On the other hand, the ABR-based ensemble model exhibited the lowest accuracy among ML-based ensemble models. The findings highlight the potential of ML-based ensemble models in effectively addressing bias correction in climate data.

Funder

Libera Università di Bolzano

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3