Trend in rainfall associated with tropical cyclones in Mexico attributed to climate change and variability

Author:

Sánchez Martínez Sinuhé Alejandro12ORCID,González Villarreal Fernando J.1,Mora Ramón Domínguez1,Arganis Juárez Maritza Liliana1ORCID

Affiliation:

1. a Instituto de Ingeniería, Universidad Nacional Autónoma de México, CDMX, México

2. b Programa de Maestría y Doctorado en Ingeniería, Universidad Nacional Autónoma de México, CDMX, México

Abstract

Abstract The aim of this study was to investigate the existence and the magnitude of trend in different areas and durations of rainfall associated with tropical cyclones (TCR). To achieve this objective, a mixed-method approach was employed using depth–area–duration (DAD) and areal reduction factor (ARFs) curves that can be described as a logarithm equation to generate time series that allows the application of statistical methods such as the Mann–Kendall (MK) and Spearman Rho (SR) to detect trends. Time series are generated by substituting different areas in the logarithmic equations. The evidence presented shows that in Mexico, the TCR lasting 24 h shows an increasing trend for maximum areas between 300 and 1,700 km2 according to the MK and SR tests, respectively; according to these same tests for durations of 48 h, upward trends were observed up to maximum areas between 5,700 and 6,900 km2. The Sen's slope reports annual increases between 0.76 and 1.32 mm and between 1.15 and 2.06 for a duration of 24 and 48 h, respectively. In contrast, no trends were observed in the time series obtained from the ARFs. Finally, the Pettitt test reports an abrupt jump from the year 1997 in all cases.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3