Integrated spatial and temporal variability of the system water use efficiency in a lower Baro River watershed, Ethiopia

Author:

Befikadu Fiseha12ORCID,Shetty Amba1ORCID,Fufa Fekadu3ORCID

Affiliation:

1. a Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India

2. b Department of Hydraulic and Water Resources Engineering, Mizan Tepi University, Mizan, Tepi, 260, Ethiopia

3. c Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Oromia State, Ethiopia

Abstract

Abstract The Baro Akobo River is representative of lower Baro watersheds with lost soils. Under eight landscapes, the geospatial and temporal variability of system water use efficiency (sWUE) were examined in a total area of 20,325 km2. This study used GIS, RS, Cropwat8.0, and EasyFit software. The anticipated irrigation requirement for the selected crop's driest five months of May, February, March, January, and April was 1, 0.9, 0.78, 0.78, and 0.34 l/s/h, respectively. The sub-catchment had maximum critical test values of σ = 12.6, μ = 11.9, and γ = 0, while Sor Metu showed the smallest value of 0.80, 1.75, and −0.03. Across the watershed, the sWUE varies with runoff, with a coefficient of variation of 71%. The overall accuracy of the land cover change was 81%, the Landsat 8 images of the soil-adjusted vegetation index showed a maximum value of 0.87 and a minimum of −1.5. The normalized vegetation index ranged from a maximum of 0.58 to a minimum of −1. By 2050, the sWUE will be 10% lower temporally, but its spatial variability will be 25% higher. Therefore, soil infiltration and water storage improve, which decreases runoff and the water lost by ET and raises sWUE.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3