Forecasting carbon dioxide emissions: application of a novel two-stage procedure based on machine learning models

Author:

Wang Chunzi1ORCID,Li Moye1,Yan Junpeng2

Affiliation:

1. a Shanghai Normal University Tianhua College, Shanghai City 201815, China

2. b Xianda College of Economics and Humanities, Shanghai International Studies University, Shanghai City 202162, China

Abstract

Abstract Accurate forecast of carbon dioxide (CO2) emissions plays a significant role in China's carbon peaking and carbon neutrality policies. A novel two-stage forecast procedure based on support vector regression (SVR), random forest (RF), ridge regression (Ridge), and artificial neural network (ANN) is proposed and evaluated by comparing it with the single-stage forecast procedure. Nine independent variables’ data (study period: 1985–2020) are used to forecast the CO2 emissions in China. Our results reveal that, when the time gap, h increases from 1 to 8, the average root mean squared error (RMSE) and mean absolute error (MAE) of SVR–SVR, SVR–RF, SVR–Ridge, and SVR–ANN are almost uniformly lower than errors arising from their single-stage version, respectively. Among these two-stage models, SVR–ANN exhibits the lowest forecast errors, whereas SVR–RF admits the highest. The mean percentage decrease in forecast errors of SVR–SVR vs. SVR, SVR–RF vs. RF, SVR–Ridge vs. Ridge, and SVR–ANN vs. ANN are 36.06, 5.98, 43.05, and 14.81 for RMSE, and 36.06, 6.91, 43.27, and 15.35 for MAE. Our two-stage procedure is also suitable to forecast other variables, such as fossil fuel and renewable energy consumption.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3