Impacts of forest cover change on carbon stock, carbon emission and land surface temperature in Sor watershed, Baro Akobo Basin, Western Ethiopia

Author:

Moisa Mitiku Badasa1ORCID,Dejene Indale Niguse2,Deribew Kiros Tsegay3,Gurmessa Mengistu Muleta4,Gemeda Dessalegn Obsi5

Affiliation:

1. a Department of Agricultural Engineering, Faculty of Technology, Wollega University Shambu campus, Shambu, Ethiopia

2. b Department of Earth Sciences, College of Natural and Computational Sciences, Wollega University Nekemte Campus, Nekemte, Ethiopia

3. c Department of Geography and Environmental Studies, Raya University, Maichew, Ethiopia

4. d Department of Fisheries and Aquatic Sciences, Faculty of Agriculture, Wollega University Shambu campus, Shambu, Ethiopia

5. e Department of Natural Resource Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia

Abstract

Abstract Human-induced actions aggravate forest degradation and result in carbon emissions. Increment of carbon emission raises land surface temperature (LST) and contributes to climate change. The aim of this study was to assess the impacts of forest cover change on carbon stocks, carbon emissions and LST over the period 1992–2022 using geospatial techniques in the Sor watershed, Western Ethiopia. The results revealed that forest land declined by 336.6 km2 due to the expansion of agricultural land with an area of 274.9 km2. Results show a decline in carbon stock of 58,883.4 tons/km2 while annual carbon emission exhibited an increasing trend of 2,418,083.91 tons to the atmosphere over the past three decades. As vegetation declined, LST increased by an average of 3.7 °C over the past three decades. All actors, including government and non-governmental organizations, should contribute to tree planting and reafforestation programmes to minimize the increasing trend of LST and carbon emissions. Furthermore, we need to build a climate-resilient green economy to protect people from the negative impacts of climate change.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3