Comparison of the performances of the gene expression programming model and the RegCM model in predicting monthly runoff

Author:

Pouyanfar Sajjad1,Nozari Hamed1ORCID,Khodamorad Pour Mehraneh1

Affiliation:

1. 1 Department of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan 65174, Iran

Abstract

Abstract Prediction of rainfall and runoff is one of the most important issues in managing catchment water resources and sustainable use of water resources. In this study, the accuracy and efficiency of the Gene Expression Programming (GEP) model and the Regional Climate Model (RegCM) to predict runoff values from monthly precipitation were investigated. For this purpose, monthly precipitation data of 48 synoptic stations, monthly temperature data of 21 synoptic stations, and also monthly runoff data of 40 hydrometric stations located in the Karkheh basin during 45 years (1972–2017) were used. Out of this statistical period, 40 years was used for calibration, and five years (1995–1999) for the validation of the model results. The results showed that the GEP model with an average R2 value of 0.948, average RMSE value of 19.4 m3/s, average NSE value of 0.91, and average SE value of 0.3, had a much more accurate performance than the RegCM model, which had an average R2 value of 0.04, average RMSE value of 298.2 m3/s, average NSE value of −0.64, and average SE value of 4.6 in predicting monthly runoff.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Water Science and Technology,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3