Integration of soil hydraulic characteristics derived from pedotransfer functions into hydrological models: evaluation of its effects on simulation uncertainty

Author:

Sun Wenchao12,Yao Xiaolei1,Cao Na3,Xu Zongxue12,Yu Jingshan1

Affiliation:

1. College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing 100875, China

2. Joint Center for Global Change Studies (JCGCS), Beijing 100875, China

3. Appraisal Center for Environment & Engineering, Ministry of Environmental Protection, Beijing 100012, China

Abstract

Aimed at reducing simulation uncertainty of hydrological models in data-sparse basins where soil hydraulic data are unavailable, a method of estimating soil water parameters of soil and water assessment tool (SWAT) from readily available soil information using pedotransfer functions was introduced. The method was evaluated through a case study of Jinjiang Basin, China and was performed based on comparison between two model calibrations: (1) soil parameters estimated from pedotransfer functions and other parameters obtained from calibration; and (2) all parameters derived from calibration. The generalized likelihood uncertainty estimation (GLUE) was used as a model calibration and uncertainty analysis tool. The results show that information contained in streamflow data is insufficient to derive physically reasonable soil parameter values via calibration. The proposed method can reduce simulation uncertainty, resulting from greater average performance of behavioral parameter sets identified by GLUE. Exploring the parameter space reveals that the means of estimating soil parameters has little influence on other parameters. These facts indicate the decrease in uncertainty most likely results from a more realistic description of soil water characteristics than calibration. Thus, the proposed method is superior to calibration for estimating soil parameters of SWAT model when basin data are sparse.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3