Bivariate design flood quantile selection using copulas

Author:

Li Tianyuan12,Guo Shenglian1,Liu Zhangjun1,Xiong Lihua1,Yin Jiabo1

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

2. Changjiang Institute of Survey Planning Design and Research, Wuhan 430010, China

Abstract

Flood event consists of peak discharge and flood volume that are mutually correlated and can be described by a copula function. For a given bivariate joint distribution, a choice of design return period will lead to infinite combinations of peak discharge and flood volume. A boundary identification method is developed to define the feasible ranges of flood peak and volume suitable for combination, and two combination methods, i.e., equivalent frequency combination (EFC) method and conditional expectation combination method for estimating unique bivariate flood quantiles are also proposed. Monte Carlo simulation method is used to evaluate the performance of these combination methods. The Geheyan reservoir in China was selected as case study. It is shown that the joint design values estimated by the two proposed combination methods are both within the feasible range, which means that the methods could be selected for designing unique flood quantiles. The proposed bivariate combination methods are also compared with univariate method, and the reservoir water level estimated by EFC method is higher than the other methods, which means the EFC method is safer for reservoir design. The developed approach provides an applicable way for the identification of feasible range and flood quantile estimation.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3