Effects of revegetation on soil moisture under different precipitation gradients in the Loess Plateau, China

Author:

Tian Fei123,Feng Xiaoming2,Zhang Lu3,Fu Bojie2,Wang Shuai2,Lv Yihe2,Wang Pei4

Affiliation:

1. Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China

2. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China

3. CSIRO Land and Water Flagship, Canberra ACT 2601, Australia

4. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China

Abstract

Revegetation can alter catchment water balance and result in soil desiccation. Large-scale revegetation took place in the Loess Plateau of China to control soil erosion and improve environmental conditions. However, the dynamic nature of soil moisture in response to revegetation under different climatic conditions is still unclear mainly due to lack of long-term in situ observations. To overcome this challenge, a biophysically based ecohydrological model (WAVES) was used to examine the effects of revegetation on soil moisture. Results showed that trees consume more water (100% of precipitation) than shrub (97.6%) and grass (98.3%), and therefore are more likely to result in soil desiccation. No runoff occurred under the tree scenario, while for shrub and grass, runoff accounted for 2.4% and 1.7% of precipitation, respectively. In areas with mean annual precipitation (MAP) less than 400 mm, tree planting resulted in soil water deficit, while in areas with MAP exceeding 600 mm, no soil water deficit occurred. Within this MAP range (400 < MAP < 600 mm), this could lead to soil water deficit during dry years. Extending this analysis to the entire Loess Plateau, 40% of the region will face reduced soil moisture when converting cropland to trees.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3