Rapid detection of Cyanobacteria by recombinase polymerase amplification combined with lateral flow strips

Author:

Li Jingjing1,Wang Chunming1,Yu Xin1,Lin Huirong1,Hui Chen2,Shuai Li2,Zhang Shenghua1

Affiliation:

1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Science, Xiamen 361021, China

2. Fujian Provincial Investigation, Design & Research Institute of Water Conservancy & Hydropower, No. 158 Dongda Road, Gulou District, Fuzhou 350001, China

Abstract

Abstract Cyanobacteria are one of the major groups of algae causing algal blooms. In this study, we developed a rapid method for detecting Cyanobacteria using a recombinase polymerase amplification (RPA) method coupled with lateral flow (LF) strips. After releasing cyanobacterial DNA from cells using a freeze-cracking method, DNA was amplified using the RPA method. Next, the RPA products were detected using the LF test. LF-RPA successfully amplified the DNA of eight cyanobacterial species and detected their presence in the sample with high specificity, distinguishing them from five non-cyanobacterial species. The method could detect cyanobacterial DNA in water samples containing as low as 0.01 cell/mL Cyanobacteria, making the method more sensitive than polymerase chain reaction (PCR), which required cell densities of at least 104 cell/mL. LF-RPA could amplify and detect cyanobacterial DNA at any temperature in the range 30–45 °C in just 30 min and without the need for a thermal cycler. The method developed in this study is simple, rapid, and effective for on-site testing of Cyanobacteria, which may become a routine measurement in efforts to detect and treat harmful algal blooms.

Funder

the National Natural Science Foundation of China

the Science and Technology Project of the Fujian Provincial Water Resources Department

the Major Science and Technology Project of Xiamen

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3