Experimental investigation of a novel-designed inclined solar still with bio-wick under dynamic water flow

Author:

Sudalaimuthu Pitchaiah12,Sathyamurthy Ravishankar345

Affiliation:

1. a Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, Tamil Nadu, India

2. b Centre for Energy Sciences and Engineering, KPR Institute of Engineering and Technology, Arasur, Coimbatore, 641407, Tamil Nadu, India

3. c Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

4. d IRC-Sustainable Energy Systems, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

5. e Interdisciplinary Research Center for Industrial Nuclear Energy (IRC-INE), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Abstract

ABSTRACT This study experimentally investigates the inclined solar still (ISS) with the incorporation of fins and natural bio-jute cloth under dynamic flow. Experiments are conducted on bright sunny summer days in Coimbatore, Tamil Nadu, India. The newly developed ISS features greatly support passive solar desalination. An increase in mass flow rate (Mf) increases heat transfer meticulously pointing out 0.65, 0.8, and 1 kg/min case absorber, and the water temperature difference is within 3°C. An Mf of 0.285 kg/min is secure for the maximum water temperature reach and clean water yield of 70°C and 4.1 kg/m2, respectively, along with jute cloth, it was 1.6 kg/m2 more against without jute cloth. The presence of a jute cloth cumulative water yield of 2.5 kg/m2 at 0.635 kg/min is very close to the absence of a wick cumulative yield of 2.3 kg/m2 during 0.285 kg/min. From these results, the authors conclude higher Mf is feasible to increase the still performance and clean water yield. The implementation of a fully renewable passive solar still is strongly recommended to attain renewable and sustainable desalination.

Publisher

IWA Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3