Leak detection in water distribution networks based on deep learning and kriging interpolation method

Author:

Yu Huimin12,Lin Sen3,Zhou Hua4,Weng Xiaodan4,Chu Shipeng12,Yu Tingchao12

Affiliation:

1. a Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Zhejiang University, Hangzhou 310058, China

2. b Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China

3. c Ningbo Donghai Group Co., Ltd, Ningbo 315537, China

4. d Huadong Engineering Corporation Limited, Hangzhou 311122, China

Abstract

ABSTRACT The burgeoning growth of urban areas has escalated the necessity for efficient and precise leak detection in water distribution networks. Automatic detection methods based on deep learning are a state-of-the-art research topic. In this paper, a methodology that combines deep learning and data imaging is proposed. The framework employs pressure monitoring data and is anchored on the following three pillars: (1) the generation of a comprehensive dataset, encompassing one year of leak-free demand data derived from Fourier Series analysis and monitoring pressure under normal and leak conditions, (2) the transformation of pressure time series into images using kriging interpolation, (3) establishing convolution neural network (CNN) and evaluating its performance of abnormal identification. The effectiveness of the proposed methodology is assessed in different image sets under various leak conditions. The findings reveal that this method meets dependable and effective outputs for leak detection, with the deep learning model achieving a high true positive rate (TPR) of 98% and an area under the curve (AUC) of 94%. This study provides invaluable information for strategic action planning and the enhancement of water loss management protocols, especially in situations where water utilities and regulatory authorities grappling with limited budgets and diminishing revenues.

Funder

National Key Research and Development Program of China

Ningbo Science and Technology Plan Project

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3