Reynolds number effect on the parameters of turbulent flows over open channels

Author:

Kumar Pritam1,Sharma Anurag1ORCID

Affiliation:

1. 1 Department of Civil Engineering, National Institute of Technology, Rourkela 769008, India

Abstract

ABSTRACT Experimental investigations were conducted to analyze the effect of Reynolds numbers on turbulent flow properties in a nonuniform sand bed channel. Steady flow simulations were performed over the nonuniform sand bed channel, considering five Reynolds numbers within the range of 36500–53886. This article endeavors to delineate the influence of Reynolds number on turbulent flow properties through meticulous laboratory studies. Observations revealed that higher Reynolds numbers corresponded to increased longitudinal velocity. As the Reynolds number increases by 10 to 47%, various turbulent flow properties exhibit distinct trends. Specifically, the longitudinal velocity, longitudinal turbulent intensity, vertical turbulent intensity, turbulent kinetic energy, Reynolds shear stress, and Taylor scale show increases ranging from 5 to 30%, 15 to 25%, 15 to 20%, 25 to 60%, 20 to 40%, and 35 to 45%, respectively. Taylor scale analysis indicated higher magnitudes associated with higher Reynolds numbers. In-depth examinations of turbulent anisotropy, third-order moments of velocity fluctuations, kurtosis, turbulent kinetic energy production, and dissipation provided additional insights into flow behavior across different Reynolds numbers. This study contributes to a more comprehensive understanding of flow dynamics in nonuniform sand bed channels under varying Reynolds number conditions, bridging the gap between laboratory studies and real-world scenarios.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3