Sustainable green synthesis of ZnFe2O4@ZnO nanocomposite using Oleaster tree bark methanolic extract for photocatalytic degradation of aqueous humic acid in the presence of UVc irradiation

Author:

Asri Majid1,Naghizadeh Ali2,Hasani Amirhesam1,Mortazavi-Derazkola Sobhan2,Javid Amirhossein1,Masoudi Fatemehsadat3

Affiliation:

1. a Department of Environmental Engineering, Faculty of Natural Research and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. b Medical Toxicology & Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran

3. c Department of Environmental Health Engineering, Faculty of Health, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran

Abstract

Abstract One of the most important humic substances in water is humic acid. These substances enter water sources through soils, sediments of aquatic animals, plants and sewage. Therefore, removing them from water sources is very important. In this study, the photocatalytic removal of humic acid was investigated using zinc ferrite nanoparticles loaded with zinc oxide (ZnFe2O4@ZnO). This research was conducted in an experimental-interventional way in a batch reactor on a laboratory scale. A novel and facile method was applied for catalyst synthesis in different conditions, and it was structurally and morphologically characterized by XRD, FT-IR, SEM, DLS and EDS mapping techniques. The effects of pH (3–11), nanoparticle dose (0.005–0.1 g/L), and humic acid concentration (2–15 mg/L) were examined up to 120 min of time. The results showed that the efficiency of humic acid degradation by ZnFe2O4@ZnO reached 95% in optimal conditions. Also, it was found that this nanocomposite has an acceptable reusability and recovery after being tested in five stages.

Funder

Birjand University of Medical Sciences

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3