Optimization of backwash parameters for hollow fiber membrane filters used for water purification

Author:

Sangrola Shubham1,Kumar Avinash1,Nivedhitha S.2,Chatterjee Jaideep3,Subbiah Senthilmurugan1,Narayanasamy Selvaraju4

Affiliation:

1. Chemical Engineering Department, Indian Institute of Technology Guwahati, Guwahati, Assam, India

2. Centre for Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India

3. Department of Chemical Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India

4. Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India

Abstract

Abstract Membrane backwash is one of the most widely used membrane regeneration techniques in large-scale desalination operations and water and wastewater treatment applications. It is necessary in order to enhance membrane life and is critical in managing the cost of pure water. The estimation of optimal backwash conditions is very important for improved hollow fiber membrane (HFM) operations. A unique feature in HFM backwash operations is the lumen side pressure drop, which leads to variation in backwash water flow across the fiber length. In this work, the effect of fiber diameter, membrane structural properties and backwash water pressure and temperature on flow distribution across the membrane length is studied for HFM modules. An analytical model for HFM backwash is developed, and model predictions are compared with measured backwash water flow variation over the fiber length. Experimental results show that the backwash flow variation over the fiber length is minimized by maintaining low backwash water pressure. Simultaneously, minimum backwash flux for effective cleaning may be achieved by increasing backwash water temperature. Homogeneous flow distribution during backwash improves backwash efficiency or forward flow rejuvenation, which can also be achieved by optimizing fiber diameter and membrane permeability. The validated mathematical model may be used for the optimization of backwash operating conditions and HF dimensions to achieve homogeneous backwash flow distribution across the membrane length.

Funder

Indian Institute of Technology Guwahati

Unilever Research centre Bangalore

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3