Usage of statistical modeling techniques in surface and groundwater level prediction

Author:

Kenda Klemen12,Peternelj Jože1,Mellios Nikos3,Kofinas Dimitris3,Čerin Matej12,Rožanec Jože12

Affiliation:

1. Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

2. Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia

3. Department of Civil Engineering, University of Thessaly, 38334 Volos, Greece

Abstract

Abstract The paper presents a thorough evaluation of the performance of different statistical modeling techniques in ground- and surface-level prediction scenarios as well as some aspects of the application of data-driven modeling in practice (feature generation, feature selection, heterogeneous data fusion, hyperparameter tuning, and model evaluation). Twenty-one different regression and classification techniques were tested. The results reveal that batch regression techniques are superior to incremental techniques in terms of accuracy and that among them gradient boosting, random forest and linear regression perform best. On the other hand, introduced incremental models are cheaper to build and update and could still yield good enough results for certain large-scale applications.

Funder

Horizon 2020 Framework Programme

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Reference45 articles.

1. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada;Water Resources Research,2012

2. Municipal demand for water in Kuwait: methodological issues and empirical results;Water Resources Research,1985

3. Modeltracker: redesigning performance analysis tools for machine learning,2015

4. Estimation of residential water demand: a state-of-the-art review;The Journal of Socio-Economics,2003

5. Adaptive stream mining: pattern learning and mining from evolving data streams,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3