Biogas production from water lilies, food waste, and sludge: substrate characterization and process performance

Author:

Khaja Mohammad Aasif1,Shah Shagoofta Rasool1,Ahmad Abas1,Khursheed Asiya1,Malani Shiv1

Affiliation:

1. 1 Civil Engineering Department, National Institute of Technology Srinagar, Jammu and Kashmir 190006, India

Abstract

Abstract The potential of water lilies, food waste, and sludge as substrates for biogas production through anaerobic digestion was investigated. We thoroughly characterized these substrates and found that water lilies had a pH of 6.4, total solids (TS) of 18.42%, volatile solids (VS) of 81.46%, and a moisture content of 87%. Food waste exhibited a pH of 7.6, TS of 27.23%, VS of 90.6%, and a moisture content of 75%. Sludge had a pH of 6.5, TS of 6%, VS of 60%, and a moisture content of 95%. Biogas production exhibited variations among the reactors. Reactor 1 reached a cumulative production of 2,527 mL, while Reactor 4 achieved 3,404 mL, with different lag phases. Reactor 4 displayed the highest biogas yield at 262 mL/g VS. Post-digestion tests confirmed efficient digestion, with volatile fatty acids ranging from 140 to 300 mg/L acetic acid and alkalinity levels between 800 and 1,500 mg CaCO3/L. Our study estimated a significant methane content, with the potential to produce 94.32 L of methane from 1 kg of TS.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Reference31 articles.

1. Production of biogas from food waste in laboratory scale dry anaerobic digester under mesophilic condition

2. Feasibility of using hypersaline lake sediment as inoculum for biogas production from anaerobic digestion of saline wastewater;Ali,2018

3. Energy supply, its demand and security issues for developed and emerging economies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3