Affiliation:
1. a Department of Civil and Structural Engineering, The University of Sheffield, Sheffield S10 2TN, UK
2. b Siemens UK, Manchester M20 2UR, UK
Abstract
Abstract
The derivation of information from monitoring drinking water quality at high spatiotemporal resolution as it passes through complex, ageing distribution systems is limited by the variable data quality from the sensitive scientific instruments necessary. A framework is developed to overcome this. Application to three extensive real-world datasets, consisting of 92 multi-parameter water quality time series of data taken from different hardware configurations, shows how the algorithms can provide quality-assured data and actionable insight. Focussing on turbidity and chlorine, the framework consists of three steps to bridge the gap between data and information; firstly, an automated rule-based data quality assessment is developed and applied to each water quality sensor, then, cross-correlation is used to determine spatiotemporal relationships and finally, spatiotemporal information enables multi-sensor data quality validation. The framework provides a method to achieve automated data quality assurance, applicable to both historic and online datasets, such that insight and actionable insight can be gained to help ensure the supply of safe, clean drinking water to protect public health.
Funder
EPSRC Centre for Doctoral Training in Water Infrastructure and Resilience
Subject
Water Science and Technology,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献