Regeneration of copper-loaded pine bark biochar using simultaneous bio-sulfide precipitation of copper

Author:

Bashir Misbah1,Mohan Chander1,Annachhatre Ajit P.1ORCID

Affiliation:

1. 1 Indian Institute of Technology, Mandi, Himachal Pradesh, 175005, India

Abstract

Abstract This research investigated adsorption of copper from aqueous solution onto the pine bark biochar, removal of adsorbed copper by bio-sulfide precipitation, and simultaneous regeneration of pine bark biochar adsorbent. A sulfidogenic reactor was established and operated under anaerobic conditions. During the sulfidogenic phase, COD:SO42− was gradually increased from 24:1 to 4:1. Use of sulfide-rich effluent from bio-sulfide reactor at neutral pH yielded above 99% copper removal from the aqueous solution. In the experiment's second stage, pine bark biochar was prepared through slow pyrolysis at 650 °C from pine bark residue that had a carbon content of 81% and a surface area of 368 m2/g. This biochar was then used in subsequent experiments. Initially, copper was adsorbed onto the biochar under neutral pH at contact time of 6 h. Maximum biochar adsorption capacity of 106 mg/g of copper was obtained. Finally, biochar was regenerated by precipitating the adsorbed copper as copper sulfide using sulfide-rich effluent from the sulfidogenic reactor. Complete recovery of adsorbed copper from biochar as copper sulfide precipitates were obtained was also confirmed by EDX-SEM analysis of biochar and precipitates. Regenerated biochar could be reused as an adsorbent in the subsequent adsorption cycle.

Funder

Ministry of Education, India

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Reference53 articles.

1. Unveiling the catalytic ability of carbonaceous materials in fenton-like reaction by controlled release cao2 nanoparticles for trichloroethylene degradation;Journal of Hazardous Materials,2021

2. Review on adsorption of heavy metal in wastewater by using geopolymer;MATEC Web of Conferences,2017

3. Catalytic fast pyrolysis for improved liquid quality,2016

4. New trends in removing heavy metals from industrial wastewater;Arabian Journal of Chemistry,2011

5. Adsorption of copper from aqueous solution onto agricultural adsorbents: kinetics and isotherm studies;Materials Today: Proceedings,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3