Structural property and risk assessment of loose deposits in drinking water distribution systems

Author:

Zhuang Yuan1,Qin Xinyi1,Li Yongtong1,Xu Shuo1,Yu Ying1,Gu Yifan2,Shi Baoyou13ORCID

Affiliation:

1. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

2. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Abstract Discoloration events caused by loose deposits resuspension in drinking water distribution systems (DWDS) are the main aspects of customer complaints across the world, but the understanding of the potential risks of loose deposits is insufficient. In this study, loose deposits in real DWDS were collected from regions frequently experiencing ‘yellow water’. Cytotoxicity of healthy human liver cells was used to evaluate the toxicity risks of the particle samples. The results showed that the loose deposits would have a realistic discoloration risk (turbidity > 10 NTU) when their concentrations were higher than 10 mg/L. The water sample containing 1,000 mg/L loose deposits had a dark yellow color (100–300 PCU) and cytotoxicity (viability of human liver cells during cytotoxicity tests 59.18–80.69%), while the water sample containing 1 mg/L loose deposits did not have obvious color (<15 PCU) and cytotoxicity (>97.00%). Particle size showed a stronger correlation with relative viability (r = 0.761) than other properties (specific area, metal content, contact angle, saturation magnetization and electron transfer number). However, it is interesting to note that both turbidity and color had a low correlation with relative viability, thus the toxicity of the particles could not be properly judged using turbidity or color. This study gives an important guidance that although the loose deposits could be visualized during water discoloration, its toxicity risks could not be evaluated through aesthetic indicators.

Funder

National Key R&D program of China

National Natural Science Foundation of China

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3