Turbulence modelling for depth-averaged velocity and boundary shear stress of a dense rigid grass bed open channel

Author:

Sahoo Sarjati1ORCID,Khuntia Jnana Ranjan2ORCID,Devi Kamalini2ORCID,Sai Prasad B. Sree3,Kumar Khatua Kishanjit1ORCID

Affiliation:

1. a Department of Civil Engineering, National Institute of Technology, Rourkela, Odisha, India

2. b Department of Civil Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana, India

3. c Department of Civil Engineering, Indian Institute of Technology, Madras, Chennai, Tamilnadu, India

Abstract

Abstract The present research focusses on a comparison of experimental and numerical approaches for flow over fixed artificial rigid grass bed channels. Various flow parameters like longitudinal velocity, depth-averaged velocity (DAV), boundary shear stress (BSS) and secondary current are analysed and compared with seven numerical models: standard, realizable and renormalization group (RNG) k–ε models and standard, shear stress transport (SST), generalized k–ω (GEKO) and Baseline (BSL) k–ω models. To evaluate the strength of the seven applied models, the error analysis has been performed. It is found that the RNG k–ε and SST k–ω models provided better results for both the DAV and BSS prediction, but the RNG k–ε model is found to be the most suitable for predicting the DAV and the SST k–ω model for BSS as compared to the other models. For the longitudinal velocity profiles, both the RNG k–ε and SST k–ω models are found to provide good agreement with experimental results at the centre of the channel, whereas the SST k–ω model is more accurate near the wall. Overall, the SST k–ω model has predicted the results with good accuracy for all the flow parameters considered in the present study.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3