Electrochemical detection of nickel(II) and zinc(II) ions by a dicarboxyl-Calix[4]arene-based sensor (Calix/MPA/Au) through differential pulse voltammetry analysis

Author:

Aziz Siti Fatimah Nur Abdul1,Ainliah Alang Ahmad Shahrul12ORCID

Affiliation:

1. a Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

2. b Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia

Abstract

Abstract Herein, we report a facile approach for constructing a calixarene-based electrochemical heavy metal sensor (Calix/MPA/Au) via a one-pot reaction for the detection of Ni(II) and Zn(II) ions. The surface elemental properties and analytical performance of the Calix/MPA/Au sensor were characterized by X-ray photoelectron spectroscopy (XPS) and differential pulse voltammetry (DPV). Under optimum conditions, the sensor exhibited detection limits of 1.5 and 0.34 mg/L at linear ranges of 2.85–6.65 and 0.13–1.68 mg/L for the Zn(II) and Ni(II) ions, respectively. The developed sensor exhibited a better electrochemical performance in the detection of Zn(II) and Ni(II) ions owing to the favourable host–guest interactions between the hydroxyl groups-functionalized lower rim of dicarboxyl-calix[4]arene and the metal ions. The RSD of the five independent Calix/MPA/Au electrode for Zn(II) and Ni(II) ions was calculated to be 16.3 and 16.1%, respectively. Despite the lower sensitivity of the modified electrode towards Ni(II) ions, this finding proves the high selectivity of the calixarene as a detection probe towards the fitted size of guest ion, hence promising to be assembled and explored as a solid-state based-supramolecular host molecule for tracing metal ions.

Funder

Ministry of Higher Education Malaysia

Universiti Putra Malaysia

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Reference51 articles.

1. Application of nickel zinc ferrite/graphene nanocomposite as a modifier for fabrication of a sensitive electrochemical sensor for determination of omeprazole in real samples

2. Cheminform abstract: design and synthesis of Calixarene;Agrawal;ChemInform,2010

3. Calixarenes, new selective molecular receptors

4. ATSDR Agency for Toxic Substances and Disease Registry 2005 Registry: Toxicological Profile for Nickel. Available from: https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=245&tid=44 (accessed 1 October 2018).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3