Hydrochemistry and multivariate statistical analysis of the quality of water from Lake Bosomtwe for agricultural and human consumption

Author:

Amankwaa Gordon1,Yin Xifeng2,Zhang Liming2,Huang Weihong1,Cao Yunfei3,Ni Xiaoni3

Affiliation:

1. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

2. Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang 212003, China

3. Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang 212004, China

Abstract

Abstract One of the six major meteoric lakes in the world, Lake Bosomtwe, is of great ecological significance for Ghanaians and the scientific community, most importantly for agricultural and human consumption. Water samples (n = 30) were collected to analyze the hydrogeochemical characteristics and water quality of the lake. Statistical methods including correlation, principal component, cluster analysis, Gibbs ratio, and the Piper–Trilinear diagram were used to analyze parameters. The Water Quality Index revealed that the lake water is not suitable for human consumption because measured pH, temperature, total dissolved solids, color, and bicarbonate exceeded their respective thresholds on all occasions. The calculated sodium absorption ratio (13.7–14.8) and soluble sodium percentage (94.43–95.43%) showed that the lake is not appropriate for irrigation as they exceeded their respective limit of 2 and 60%. The Gibbs ratio revealed that rock–water interaction is the underlying mechanism for water evolution. The Piper–Trilinear diagram revealed that alkalies earth and weak acids dominate the water chemistry of the lake. The dominant cation is sodium (82.22%), while the dominant anion is bicarbonate (79.39%). Five monitoring stations were identified, and the water quality was influenced by diverse anthropogenic and natural sources. The findings will provide a reference for policymakers and decision-makers at Lake Bosomtwe.

Funder

National Natural Science Foundation of China under grant number

Jiangsu Natural Science Foundation of China under grant number

Zhenjiang Natural Science Foundation of China under grant numbers

Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3