Investigating the sustainable performance of a nanoscale zerovalent iron permeable reactive barrier for removal of nitrate, sulfide, and arsenic

Author:

Naghikhani Ali1,Karbassi Abdolreza1,Sarang Amin1,Baghdadi Majid1

Affiliation:

1. 1 Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran

Abstract

Abstract The quality of groundwater resources is at catastrophic risk. The proper performance of iron nanoparticles has made a permeable reactive barrier (PRB) an alternative to conventional filtration methods. The performance of nanozerovalent iron (nZVI) PRBs is limited by particle aggregation, instability, and phase separation, even at low iron concentrations. Therefore, the precipitation of reactive materials and a decrease in the longevity of PRB are fundamental challenges. A laboratory setup is used to compare the performance of bare nZVI and xanthan gum (XG)-nZVI + Mulch PRB to simultaneously remove nitrate, sulfide, and arsenic in groundwater. nZVI (average diameter of 35–55 nm) particles are used as reactive media. The objectives are (1) to develop a method for treating nitrate, sulfide, and arsenic simultaneously in groundwater using organic mulch and XG-nZVI; and (2) to evaluate the longevity performance of the XG-nZVI + Mulch and bare nanoparticles treatment system over 10 days. The results showed that the XG-nZVI + Mulch barrier's performance for eliminating NO3-, As, and S2− was generally improved compared to the bare nZVI barriers by 5.7, 19.2, and 10.9%, respectively. Finally, despite the need for long-term sustainability assessment, XG-nZVI PRB performance is impressive, and this stability promises to improve the longevity of nanoparticles while used in PRBs.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3