Effect of precipitation and sediment concentration on the loss of nitrogen and phosphorus in the Pasikhan River

Author:

Ebrahimi Eisa1ORCID,Asadi Hossein2ORCID,Rahmani Mohammad3ORCID,Farhangi Mohammad Bagher1,Ashrafzadeh Afshin4ORCID

Affiliation:

1. Soil Science Department, University of Guilan, Rasht, Iran

2. Soil Science Department, University of Tehran, Tehran, Iran

3. Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, USA

4. Water Engineering Department, University of Guilan, Rasht, Iran

Abstract

Abstract Natural and anthropogenic factors influence the entry of pollutants into surface waters and their accumulation in aquatic ecosystems. This study aimed to investigate precipitation and sediment concentration on the outflow of different forms of phosphorus (P) and nitrogen (N) in three primary land-use types along the Pasikhan River, the biggest river entering the Anzali Wetland in the Southern Caspian sea. Water sampling was performed on a monthly basis during the time bracket of 2017–2018. Different forms of P including total, soluble, particulate, total reactive, and dissolved reactive, and total Kjeldahl N, soluble N, particulate N, and were determined in the water samples. Total phosphorus and total Kjeldahl nitrogen contents lay within the range of 2.2–4.7 and from 0.14 to 0.33 mg l−1, respectively, downstream of the river. The highest monthly outflow of P from the watershed at the Agriculture station was recorded in October. Substantial conformity was found between the monthly trends of and and the trend of precipitation. The results indicated that sediment load intensified after an increase in the rainfall rate, leading to elevated N and P concentrations in the river water, mainly as particulate phosphorus and soluble nitrogen. It can also be inferred from the result that the concentration of N and P is directly related to the sediment concentration increase due to the rainfall. Increasing levels of nutrients such as N and P in the Pasikhan River can cause eutrophication in the Anzali Wetland, which needs conservative measures for reducing these elements' dynamic in the watershed.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3