Temporal moment-based approach to understand the dissolved-phase LNAPL recovery and associated characteristics in the porous system under dynamic groundwater table conditions

Author:

Guleria Abhay1,Gupta Pankaj Kumar234ORCID,Chakma Sumedha1,Yadav Brijesh Kumar2

Affiliation:

1. a Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi 110016, India

2. b Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee 247667, India

3. c Faculty of Environment, University of Waterloo, Waterloo, ON N2L 3G1, Canada

4. d Indian Institute of Technology (I.I.T.) Delhi, New Delhi, 110 016, India

Abstract

Abstract The dissolved-phase hydrocarbon recovery can be the first step in decontaminating the soil–water system if spilled with light/dense non-aqueous phase liquid (L/D-NAPL). This study proposes a temporal moment-based approach to investigate the effectiveness of groundwater table manipulations for recovering dissolved-phase byproducts of light non-aqueous phase liquid (LNAPL) from the subsurface system. Temporal moments were computed utilizing experimentally observed and HYDRUS-simulated dissolved-phase toluene concentration data, representative of LNAPL, under stable and dynamic groundwater table fluctuation (GWTF) scenarios. Zeroth temporal moment (ZTM) showed that the hydrocarbon mass recovery varied from 1,804 to 5,190.6 mg/L × h, with the highest variation for the rapid GWTF scenario. An increase in the ZTM of hydrocarbon was observed with an increase in the rate of change of magnitude of the water table and pore velocity fluctuation as in the case of a rapid GWTF as compared to a stable GWTF case. The value of mean residence time for the stable groundwater table case was highest for the entire experimental duration, followed by slow, general, and rapid cases. Temporal moment analysis revealed that the high dissolved-phase hydrocarbon recovery could be achieved by manipulating groundwater table conditions. The present study provides a powerful technique to improve dissolved hydrocarbon remediation in mineral aquifers using hydrological restorations.

Publisher

IWA Publishing

Subject

Management, Monitoring, Policy and Law,Pollution,Water Science and Technology,Ecology,Civil and Structural Engineering,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3