The numerical development of MOC for analyzing the inclined pipelines using the experimental network of Babol Noshirvani University as a case study

Author:

Negharchi Saeid Mohammadzade1,Shafaghat Rouzbeh1

Affiliation:

1. Sea-Based Energy Research Group, Babol Noshirvani University of Technology, Babol, Iran

Abstract

Abstract Despite the applications of the Method of Characteristics (MOC) for analyzing the unsteady flows, using this method in networks with variable elevations still has many challenges. In this paper, by developing modified correlations as a computer code, the possibility of analyzing inclined pipelines has been evaluated. For validation and calibration, the results of MOC were compared with the results of EPANET software as well as experimental data. To extract experimental data, the water network of Babol Noshirvani University of Technology (NIT) with a constant head of 7 m three loops, and four inclined branches were employed. While evaluating the capabilities of the developed computer code, the results show that for all pipes, as the number of pressure fluctuations in a specific period increases, the intensity of the pressure fluctuations decreases, and the damping speed increases as well. Moreover, in inclined pipes, unlike noninclined pipes, the intensity of pressure fluctuations will increase as the elevation increases and the cross-sectional distance from the transient event increases as well. The evaluation of the effect of space steps on the accuracy of the solution to the MOC shows that in the study network, considering 20 segments for each pipe, the fastest response time with an error of less than 1% is obtained.

Publisher

IWA Publishing

Subject

Health, Toxicology and Mutagenesis,Water Science and Technology,Environmental Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3